Main Page   Class Hierarchy   Compound List   Header Files   Compound Members  

ddggeom.h

This is the verbatim text of the ddggeom.h include file.
/*
    Copyright (C) 1997, 1998, 1999, 2000 by Alex Pfaffe
        (Digital Dawn Graphics Inc)
  
    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Library General Public
    License as published by the Free Software Foundation; either
    version 2 of the License, or (at your option) any later version.
  
    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Library General Public License for more details.
  
    You should have received a copy of the GNU Library General Public
    License along with this library; if not, write to the Free
    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef _ddgGeometry_Class_
#define _ddgGeometry_Class_

#include "math/ddgvec.h"
#include "util/ddgerror.h"

#define ddgVertex3 ddgVector3
#define ddgVertex2 ddgVector2
#define ddgVertex1 float
#define ddgPoint3 ddgVector3
#define ddgPoint2 ddgVector2
#define ddgPoint1 float



class WEXP ddgPlane3 {
public:
        ddgVector3              n;
        float d;
        inline float a(void) { return n[0];};
        inline float b(void) { return n[1];};
        inline float c(void) { return n[2];};

        ddgPlane3(void) {}
        ddgPlane3( const ddgVector3 *p0, const ddgVector3 *p1, const ddgVector3 *p2)
        {
                set(p0,p1,p2);
        }
        void set( const ddgVector3 *p0, const ddgVector3 *p1, const ddgVector3 *p2)
        {
                ddgVector3 v1 = *p1 - *p0;
                ddgVector3 v2 = *p2 - *p0;
                n.cross(&v1, &v2);
                d = -1 *n.dot(p0);
        }
        ddgPlane3( const ddgVector3 p0, const ddgVector3 pn)
        {
                n = pn;
                // Solve for D.
                d = -1 * (n.dot(&p0));
        }
        bool projectAlongX(ddgVector3 *p)
        {
                if (n[0] == 0.0)
                        return ddgFailure;
                (*p)[0] = -1 * (d + n[1] * (*p)[1] + n[2] * (*p)[2])/ n[0];
                return ddgSuccess;
        }
        bool projectAlongY(ddgVector3 *p)
        {
                if (n[1] == 0.0)
                        return ddgFailure;
                (*p)[1] = -1 * (d + n[0] * (*p)[0] + n[2] * (*p)[2])/ n[1];
                return ddgSuccess;
        }
        bool projectAlongZ(ddgVector3 *p)
        {
                if (n[2] == 0.0)
                        return ddgFailure;
                (*p)[2] = -1 * (d + n[1] * (*p)[1] + n[0] * (*p)[0])/ n[2];
                return ddgSuccess;
        }
        void set( const ddgVector3 pn, float pd )
        {
                n = pn;
                d = pd;
        }
        void normalize( void )
        {
                float s = n.size();
                ddgAssert(s != 0.0);
                n.divide(s);
                d /= s;
        }
        ddgVector3 project(ddgVector3 *p0);
    bool intersectPlaneWithLine( const ddgVector3* l1, const ddgVector3* l2, ddgVector3 *pi);
    bool intersectPointPlane( const ddgVector3* pt);
        float distToPoint(const ddgVector3* p);
        inline float isPointAbovePlane( ddgVector3 *q)
        {
                return n.dot(q)+d;
        }
};


class WEXP ddgPlane2 {
public:
        ddgVector2              n;
        float d;
        inline float a(void) { return n[0];};
        inline float b(void) { return n[1];};

        ddgPlane2(void) {}
        ddgPlane2( const ddgVector2 p0, const ddgVector2 pn)
        {
                n = pn;
                // Solve for D.
                d = -1 * (n.dot(&p0));
        }
        void set( const ddgVector2 pn, float pd )
        {
                n = pn;
                d = pd;
        }
        void normalize( void )
        {
                n.normalize();
        }
        inline float isPointAbovePlane( ddgVector2 *q)
        {
                return n.dot(q)+d;
        }
};


class WEXP ddgTriangle3 {
public:
    ddgVertex3  v[3];
    ddgTriangle3(ddgVector3 *p1, ddgVector3 *p2, ddgVector3 *p3 ) 
        {v[0].set(p1), v[1].set(p2), v[2].set(p3); }
    void set(ddgVector3 *p1, ddgVector3 *p2, ddgVector3 *p3 ) 
        {v[0].set(p1), v[1].set(p2), v[2].set(p3); }
    ddgTriangle3(void ) {}
    bool intersectTriangleWithLine( const ddgVector3* l1, const ddgVector3* l2, ddgVector3 *pi);
    bool intersectPointTriangle( const ddgVector3* pt);
};

class WEXP ddgPrism3 {
public:
        ddgTriangle3    t[2];
    ddgPrism3(ddgVector3 *pt1, ddgVector3 *pt2, ddgVector3 *pt3, ddgVector3 *pb1, ddgVector3 *pb2, ddgVector3 *pb3 )
        { t[0].set(pt1,pt2,pt3), t[1].set(pb1,pb2,pb3); }
    ddgPrism3(ddgTriangle3* top, ddgTriangle3* bottom )
                {
                t[0] = *top;
                t[1] = *bottom;
                }
        ddgPrism3(void) {}
};


class WEXP ddgPolygon3 {
public:
        unsigned short noPoints;
        ddgVector3              *vertex;
        ddgPolygon3 *clip( ddgPlane3 *p, bool rotated);
};

class WEXP ddgRect2 {
public:
        ddgVector2 min;
        ddgVector2 max;
        ddgRect2(void) {}
        ddgRect2( ddgVector2 *p1, ddgVector2 *p2)
        {
                        min = p1;
                        max = p1;
                        min.minimum(p2);
                        max.maximum(p2);
        }
        bool intersect(ddgRect2 *r, ddgRect2 *i = NULL)
        {
                if (r->min[0] > max[0] || min[0] > r->max[0] || r->min[1] > max[1] || min[1] > r->max[1])
                        return false;
                if (i)
                {
                        i->min = min;
                        i->max = max;
                        i->min.maximum(&(r->min));
                        i->max.minimum(&(r->max));
                }
                return true;
        }
};
class WEXP ddgLine2 {
public:
        ddgVector2      p;
        ddgVector2      d;
        ddgLine2( ddgVector2 *p1, ddgVector2 *p2 )
        {
                set(p1,p2);
        }
        void set( ddgVector2 *p1, ddgVector2 *p2 )
        {
                p.set(p1);
                d.set(p2);
                d -=p1;
                d.normalize();
        }
        ddgLine2(void) {}
        ddgVector2 o(void) { return ddgVector2(d[1],d[0]); }

        inline bool solve( ddgVector2 *v, int dim)
        {
                if (d[dim] == 0.0)
                        return ddgFailure;
                float t = (v->v[dim] - p.v[dim])/d[dim];
                *v = p + (d * t);
                return ddgSuccess;
        }
        bool intersect( ddgLine2 *l, ddgVector2 *pt)
        {
                if (d[1] == 0 )
                {
                        ddgAsserts(0,"Special case");
                }
                if (d[1] == l->d[1] && d[0] == l->d[0])
                {
                        return ddgFailure;              // Parallel lines.
                }
                float x = (d[0]*p[0] - l->d[0]*l->p[0]+d[1]*+p[1]- l->d[1]*l->p[1])*(l->d[1]*d[1]);
                x /= (d[1]*d[0] - l->d[1]*l->d[0]);
                float y = (d[1]*p[1]+d[0]*p[0]-d[0]*x ) / d[1];
                pt->set(x,y);
                return ddgSuccess;
        }
        inline float isPointLeftOfLine( ddgVector2 *q)
        {
                ddgVector2 vq = *q - p;

            return o().dot(&vq);
        }
};

class WEXP ddgLine3 {
public:
        ddgVector3      p;
        ddgVector3      d;
        ddgLine3( const ddgVector3 p1, const ddgVector3 p2 )
        {
                p.set(&p1);
                d.set(&p2);
                d -= p1;
                d.normalize();
        }
        inline bool solve( ddgVector3 *u, int dim)
        {
                if (d[dim] == 0.0)
                        return ddgFailure;
                float n = ((*u)[dim] - p[dim])/d[dim];

                *u =d + ( p * n);
                return ddgSuccess;
        }

        ddgVector3 intersect( ddgLine3 *)
        {
                ddgVector3 pt(0,0,0);
                return pt;
        }
        bool intersect( ddgLine3 *l, ddgVector3 *pt)
        {
                // $TODO this function is simply wrong...
                if (d[1] == 0 )
                {
                        ddgAsserts(0,"Special case");
                }
                if (d[1] == l->d[1] && d[0] == l->d[0])
                {
                        return ddgFailure;              // Parallel lines.
                }
                float x = (d[0]*p[0] - l->d[0]*l->p[0]+d[1]*+p[1]- l->d[1]*l->p[1])*(l->d[1]*d[1]);
                x /= (d[1]*d[0] - l->d[1]*l->d[0]);
                float y = (d[1]*p[1]+d[0]*p[0]-d[0]*x ) / d[1];
                // Dirty hack.
                pt->set(x,y,p[2]);
                return ddgSuccess;
        }
};


#endif

Generated at Sun Sep 17 19:27:57 2000 for Digital Dawn Graphics Toolkit by doxygen 0.49-991205 written by Dimitri van Heesch, © 1997-1999